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ABSTRACT
Purpose A framework for the evaluation of paediatric
population models is proposed and applied to two different
paediatric population pharmacokinetic models for morphine.
One covariate model was based on a systematic covariate
analysis, the other on fixed allometric scaling principles.
Methods The six evaluation criteria in the framework were 1)
number of parameters and condition number, 2) numerical
diagnostics, 3) prediction-based diagnostics, 4) η-shrinkage, 5)
simulation-based diagnostics, 6) diagnostics of individual and
population parameter estimates versus covariates, including
measurements of bias and precision of the population values
compared to the observed individual values. The framework
entails both an internal and external model evaluation
procedure.
Results The application of the framework to the two models
resulted in the detection of overparameterization and misleading
diagnostics based on individual predictions caused by high
shrinkage. The diagnostic of individual and population parameter
estimates versus covariates proved to be highly informative in
assessing obtained covariate relationships. Based on the frame-
work, the systematic covariate model proved to be superior over
the fixed allometric model in terms of predictive performance.

Conclusions The proposed framework is suitable for the
evaluation of paediatric (covariate) models and should be applied
to corroborate the descriptive and predictive properties of these
models.

KEY WORDS model evaluation . morphine . paediatric
pharmacokinetic population modeling

ABBREVIATIONS
IQR inter quartile range
M3G morphine-3-glucuronide
M6G morphine-6-glucuronide
MPE mean prediction error
NPDE normalized prediction distribution error
PD pharmacodynamics
PK pharmacokinetics
PMA postmenstrual age
PNA postnatal age
RMSE root mean square error
RSE relative standard error

INTRODUCTION

Whereas many diagnostic and validation tools are available
for the evaluation of population models in the adult
population, these tools may not always directly suffice in
the paediatric population due to the heterogeneity of this
special population and the scarcity of the datasets. In this
study, a framework including six evaluation criteria is
presented for the systematic assessment of the descriptive
and predictive properties of paediatric (covariate) models
that takes these specific issues into consideration.

In paediatric population pharmacokinetic (PK) models,
the influence of the many physiological changes that take
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place in the paediatric age range are reflected in covariate
relationships that are usually based on body-weight and/or
age. However, since body-weight and age are naturally
correlated in the paediatric population, there is a debate on
how to incorporate the influence of the physiological
changes in paediatric population PK models. Body-weight
and age may be regarded as regular covariates whose
predictive properties on PK parameters are evaluated
together with other covariates in a systematic covariate
analysis by formally testing them for significance and only
retaining them in the model if they statistically improve the
model fit (1–3). Alternatively, body-weight can be included
a priori into paediatric PK models by the use of a body-
weight-based allometric equation with a fixed exponent of
0.75 for clearance and 1 for distribution volume. These
equations can subsequently be augmented by estimated
age-based functions of various forms (3–5).

In recent years, two different population PK models for
morphine and its two major pharmacologically active
metabolites, morphine-3-glucuronide (M3G) and
morphine-6-glucuronide (M6G), in children younger than
3 years have been published (1,4). The model by Knibbe et
al. (1) was developed using a systematic covariate analysis.
The model by Bouwmeester et al. (4) was developed using
fixed allometric scaling principles in conjunction with
estimated age-based functions. As these models were
developed using similar datasets, these models provide both
an example for the assessment of the developed framework
for the evaluation of paediatric (covariate) models, as well
as an opportunity to directly compare the performance of
these two fundamentally different paediatric covariate
models.

MATERIALS AND METHODS

Models and Data

Figure 1 shows a schematic representation of the two
models that are evaluated in the current analysis. In the
model by Knibbe et al. (1), the maturation of the formation
and elimination clearances of the morphine glucuronides
was found to be best described by a body-weight-based
exponential equation with an estimated exponent of 1.44.
Within this exponential equation, the formation clearance
of the glucuronides was found to be significantly reduced in
neonates younger than 10 days. Distribution volumes were
estimated to scale linearly with body-weight. This model
will be referred to as the systematic covariate model.

In the model by Bouwmeester et al. (4), body-weight was
included a priori using an allometric equation with fixed
exponents of 0.75 for clearance and 1 for distribution
volume. Three exponential equations based on postnatal

age (PNA) augmented the model: one equation for
distribution volumes, one for the formation of the morphine
metabolites and one for the elimination of the metabolites.
Bilirubin concentration and creatinine concentrations were
also incorporated into the model as covariates for the
formation and elimination of the glucuronides, respectively.
This model will be referred to as the fixed allometric model.

The systematic covariate model (Knibbe et al. (1)) was
developed using two datasets (6,7), while the fixed allome-
tric model (Bouwmeester et al. (4)) was developed using only
one of these two datasets (6). To allow for a direct
comparison, the systematic covariate model was refit with
the data from the one common dataset. This dataset will be
referred to as the internal dataset of this study and consists
of post-operative term neonates, infants and children up to
the age of 3 years on a continuous or intermitted
intravenous morphine regimen (6).

For the external evaluation of the two paediatric
covariate models in the current analysis, five previously
published datasets (7–11) were used. These external data-
sets included the same patient population as the internal
dataset with the exception that their PNA ranged up to
only 1 year instead of 3 years. In addition, two external
datasets included preterm neonates (7,8), which is a
younger age range than the age range in the internal
dataset (6) used for model building. An overview of all
datasets is given in Table I.

Model Evaluation

All model fitting and model-based simulations in the
current study were performed using NONMEM VI
(ICON, Ellicott City, MD).

The framework for the evaluation of paediatric popula-
tion models is composed of the following six evaluation
criteria and tools:

1) Total number of parameters and condition number of
the model: The latter was obtained by taking the ratio
of the largest and smallest eigenvalue of the covariance
matrix of the estimate from the NONMEM output.

2) Numerical diagnostics by means of a bootstrap analysis
using the PsN software package (12): One hundred
datasets were resampled with replacement from the
internal dataset and refit to the models. The parameter
estimates for fixed and random effects obtained in
every separate run were summarized in terms of mean
and relative standard errors (RSE) for each parameter.
Runs that did not minimize successfully were excluded
from the analysis.

3) Prediction-based diagnostics by means of basic
goodness-of-fit plots: Both the individual and popula-
tion predicted concentrations were plotted versus the
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concentrations that were actually observed in these data-
sets. Plots were made for both the internal and external
datasets and for the population as a whole as well as for
stratified subsets based on age (0–1 month, 1 month–
1 year, 1–3 years). Mirror plots were created to serve as a
reference for these predicted versus observed plots (13).

4) η-shrinkage as defined by Karlsson et al. (13), which was
calculated for all model parameters for which inter-
individual variability was estimated.

5) Simulation-based diagnostics by means of normalized
prediction distribution errors (NPDE) (14): Both the
internal and merged external datasets were simulated
1,000 times with inclusion of the inter-individual
variability and residual error. Using the NPDE add-
on package for R (version 1.2) (15), a cumulative
distribution was assembled for each observation with
the 1,000 simulated concentrations; subsequently, the
value of the cumulative distribution at the observed
concentration was determined. An inverse function of
the normal cumulative density function was then

applied to these data to obtain what are called the
normalized prediction distribution errors. The NPDEs
are presented in a total distribution, versus time and
versus the concentration. This analysis was also per-
formed on the population as a whole and on the
stratified subsets described in item 3.

6) Individual and population parameter estimates versus
the most predictive covariate in the model: In both
models, body-weight was the most predictive cova-
riate. Total morphine clearance was defined as the
sum of Cl1 and Cl2 for the systematic covariate model
(see Fig. 1a) and of Cl0, Cl1, and Cl2 for the fixed
allometric model (see Fig. 1b). The elimination
clearances of the metabolites (Cl3 and Cl4) and the
distribution volume of the central morphine compart-
ment (V1) were directly compared between the two
models.

To numerically quantify the bias and precision of
the model-predicted parameter values compared to
the observed parameter values in the internal datasets,

Table I Overview of the Internal Dataset (Int.1) and the External Datasets (Ext.1–5) Used for Model Building and External Model Evaluation

Dataset Patient population Number of
patients

Postnatal age in days
(median, IQR)

Body-weight in g
(median, IQR)

Int.1.(6) Post-operative term neonates, infants and children. 183 97 (8–286) 4,700 (3,100–8,000)

Ext.1.(9) Post-operative term neonates and infants 28 14 (0–70) 3,100 (2,550–4,000)

Ext.2.(10) Post-operative term neonates and infants 9 10.5 (3–135) 3,800 (3,000–5,000)

Ext.3.(11) Term neonates and infants on artificial ventilation 12 13 (6–80) 3,050 (2,675–6,900)

Ext.4.(7) Preterm and term neonates on artificial ventilation 63 0.4 (0.2–0.5) 1,180 (862.5–1,760)

Ext.5.(8) Preterm neonates on artificial ventilation 41 1 (1–2) 1,035 (892.5–1,295)

Int. internal dataset, Ext. external dataset, M morphine, M3G morphine-3-glucuronide, M6G morphine-6-glucuronide

Fig. 1 Schematic representation
of the systematic covariate model
(1) (A) and the fixed allometric
model (4) (B). M = morphine,
M3G = morphine-3-glucuronide,
M6G = morphine-6-glucuronide,
V = distribution volume of the
designated compartment,
Cl = clearance of designated
route, Q = inter-compartmental
clearance, PNA = postnatal age, k
and m = exponential scaling
constants, β = fraction below
adult values at birth and
T = maturation half-life for
distribution volume (vol),
formation clearance of the
metabolites (cl), and elimination
clearance of the metabolites (rf),
C = plasma concentration and
K = scaling constant for bilirubin
(bili) and creatinine (crea).
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Mean Prediction Error (MPE, Eq. 1) and the Root
Mean Square Error (RMSE, Eq. 2) were calculated
for both models.

MPE ¼
P ðpredicted�observedÞ»100

observed

n
ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ðpredicted � observedÞ2

n

s

ð2Þ

In these equations, predicted parameter values
were the population predicted values for each indi-
vidual by both models, and the observed parameter
values were the individually observed post hoc param-
eter values for that individual. MPE and RMSE were
calculated separately for the strata described before.

A table with MPE and RMSE was also constructed for
the external datasets. This table was also stratified based
on age with the following strata: preterm neonates (PNA
<1 month and postmenstrual age (PMA) at birth
<36 weeks), term neonates (PNA <1 month and PMA
at birth ≥36 weeks), toddlers (PNA 1 month–1 year).

RESULTS

Table II (A and B) lists the parameter estimates as
obtained with the fit of the internal dataset by the
systematic covariate model and the fixed allometric
model, respectively.

With a total of 18 model parameters, the systematic
covariate model described the fixed and random effects
with fewer parameters than the fixed allometric model,
which contains 35 model parameters. The condition
number of the systematic covariate model was 293, which
is well below the critical value for the indication of serious
ill-conditioning of 1,000 (16). For the fixed allometric
model, the condition number was 10,698, which is more
than ten-fold higher than the critical value.

In Table II (A and B) the parameter estimates obtained
with the bootstrap analyses are presented as well. The
parameter estimates of the bootstrap deviated more from the
values obtained in the initial model fit for the fixed allometric
model compared to the systematic covariate model. For both
the model fit and the bootstrap procedure with the fixed
allometric model, the overall precision of the parameter
estimates was lower than the systematic covariate model
as expressed by the higher relative standard error (RSE)
of the parameter estimates. Additionally, for the boot-
strap, using the fixed allometric model only 46 out of

100 model refits minimized successfully, whereas 98 out
of 100 model refits successfully minimized using the
systematic covariate model.

Figure 2 shows the individual predicted concentrations
versus observed concentrations for morphine and its metab-
olites as obtained with the internal dataset for both the
systematic covariate model (A) and the fixed allometric
model (B). This figure shows a slightly better description of
individual concentrations by the fixed allometric model
compared to the systematic covariate model, especially for
the mother compound morphine.

Figure 3 shows the population predicted concentrations
versus observed concentrations obtained with the internal as
well as the five external datasets. This figure shows the
systematic covariate model to be superior to the fixed
allometric model in the predictions of population concen-
trations in the datasets. The predictions for the systematic
covariate model are only slightly biased, and since this bias is
also observed in the mirror plots (data not shown), this is not
indicative of model misspecification. For the fixed allometric
model, on the other hand, significant bias towards under-
prediction can be observed that did not correspond to trends
observed in the mirror plots (data not shown).

For both models, stratification into the different age
groups of the plots of the predicted versus observed
concentrations showed no differences in model perfor-
mance (data not shown).

Table III shows the percentage of η-shrinkage for the
parameters for which inter-individual variability was iden-
tified in each of the two models. Both models have
parameters for which shrinkage is relatively high (>20%),
indicating that the individual data in the internal dataset is
not rich in information about these parameters.

For both models, the results of the NPDE analysis with
the internal dataset are depicted in Fig. 4. For the
systematic covariate model, no trends in time or versus
concentration are observed. The mean of the distribution of
NPDEs is close to 0, while the variance is slightly lower
than 1. The trends observed in the plots for the fixed
allometric model are indicative of an under-prediction,
which appears to be relatively constant over time but to
increase with decreasing concentrations.

The results of the NPDE analysis with the external
datasets confirmed the results obtained with the internal
dataset for both models (data not shown). Stratification
into different age groups also revealed similar results for
the three age groups for each of the models (data not
shown).

The plots of the individual post hoc parameter estimates
and population predicted parameter estimates for total
morphine clearance, the clearances of the metabolites and
distribution volume of the central morphine compartment
versus body-weight for both models are shown in Fig. 5. For
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Table II Parameter Estimates from the Model Fit, Number of Model Parameters and Parameter Estimates from the Bootstrap Procedure for the
Systematic Covariate Model (A) and for the Fixed Allometric Model (B) Obtained with the Internal Dataset. Parameter Names are Explained in Fig. 1

Parameters systematic covariate model Model fit Bootstrap (98 out of 100 successful)
Value (RSE%) Mean value (RSE%)

A

Fixed effects (n=10)

k = exponential scaling factor on clearance 1.49 (3.6) 1.49 (3.42)

m = exponential scaling factor on distribution volume 1 fixed 1 fixed

Cl1 PNA < 10d (ml/min/kgk) 3.68 (9.0) 3.68 (8.15)

Cl1 PNA > 10d (ml/min/kgk) 8.04 (11.0) 8.01 (10.1)

Cl2 PNA < 10d (ml/min/kgk) 0.423 (11.1) 0.42 (14.4)

Cl2 PNA >10d (ml/min/kgk) 0.623 (10.2) 0.62 (13.0)

Cl3 (ml/min/kgk) 1.84 (9.9) 1.85 (9.73)

Cl4 (ml/min/kgk) 0.955 (9.0) 0.95 (12.6)

Qeq (ml/min) 40.8 (24.1) 43.8 (42.7)

V1 = V4 (l/kg) 1.64 (8.2) 1.65 (9.44)

V2 = V3 (fraction of V1) 0.157 (21.2) 0.161 (27.0)

Inter-individual variability (n=5)

ω2 Cl1 0.0809 (24.0) 0.0774 (22.9)

ω2 Cl2 – –

ω2 Cl3 0.256 (27.1) 0.263 (29.1)

ω2 Cl4 0.110 (15.2) 0.110 (15.5)

ω2 Cl3-Cl4 covariance 0.128 (18.2) 0.126 (19.8)

ω2 V1 0.162 (17.9) 0.168 (20.7)

Residual error (n=3)

σ2, prop (morphine) 0.440 (14.7) 0.431 (14.0)

σ2, prop (M3G) 0.261 (27.2) 0.243 (26.0)

σ2, prop (M6G) 0.0894 (15.7) 0.0894 (16.4)

Parameters fixed allometric model Model fit Bootstrap (46 out of 100 successful)

Value (RSE%) Value (RSE%)

B

Fixed effects (n=14)

Cl0 (l/h/70 kg0.75) 3.12 (117) 2.59 (43.4)

Cl1 (l/h/70 kg0.75) 64.3 (18.0) 55.2 (32.3)

Cl2 (l/h/70 kg0.75) 3.63 (14.0) 3.99 (65.6)

Cl3 (l/h/70 kg0.75) 17.4 (16.0) 7.23 (38.0)

Cl4 (l/h/70 kg0.75) 5.8 (20.2) 5.43 (23.4)

V1 (l/70 kg) 136 (59.3) 147 (34.9)

V2 (l/70 kg) 23 fixed 23 fixed

V3 (l/70 kg) 30 fixed 30 fixed

Βcl 0.834 (6.41) 0.894 (8.35)

Tcl (days) 88.3 (37.4) 65.2 (176)

Βrf 0.832 (9.74) 0.814 (10.7)

Trf (days) 129 (49.8) 136 (45.4)

Βvol 0.391 (28.4) 0.388 (38.1)

Tvol (days) 26.3 (72.2) 26.7 (58.9)

Kage 0.0141 (140) 0.0201 (36.3)

Kbili -0.00203 (33.2) -0.00207 (35.3)
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Table II (continued)

Parameters systematic covariate model Model fit Bootstrap (98 out of 100 successful)
Value (RSE%) Mean value (RSE%)

Inter-individual variability (n=16)

ω2 Cl0 1.37 (104) 1.80 (69.9)

ω2 Cl1 0.346 (20.9) 0.916 (74.9)

ω2 Cl2 0.675 (29.3) 1.21 (75.8)

ω2 Cl3 0.185 (20.8) 0.764 (41.7)

ω2 Cl4 0.545 (32.1) 1.39 (87.6)

ω2 V1 0.351 (29.1) 1.54 (121)

full omega block on all eta’s except Cl0 Data not shown Data not shown

Residual error (n=5)

σ2, prop morphine 0.128 (11.6) 0.503 (105)

σ2, add M3G (ng/ml) 50.3 (36.2) 136 (217)

σ2, prop M3G 0.118 (27.0) 2.21 (80.0)

σ2, add M6G (ng/ml) 0.198 (26.0) 1.31 (148)

σ2, prop M6G 0.0925 (16.9) 0.249 (53.0)
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Fig. 2 Individual predicted concentrations versus observed concentrations including a loess curve of morphine and its metabolites in the internal dataset
Predictions by the systematic covariate model are depicted in panel A, and predictions by the fixed allometric model in panel B.

802 Krekels et al.



the systematic covariate model, total morphine clearance is
composed of Cl1 and Cl2 (see Fig. 1a), which both have
different population values for children older and younger
than 10 days, resulting in two different lines of population
parameter estimates. For the fixed allometric model, total
morphine clearance is composed of Cl0, Cl1 and Cl2 (see
Fig. 1b). The larger number of additional covariates (age,
and bilirubin and creatinine concentration) on the struc-
tural parameters in the fixed allometric model results in
scattered lines for the population parameter estimates of
this model. This figure shows that for the systematic
covariate model, the population predicted values describe
the individual post hoc values without bias for all parameters,

whereas for the fixed allometric model, the population
predicted values are biased compared to the individual post
hoc values for all parameters.

Table IV numerically quantifies the bias (MPE) in the
population predicted parameter values compared to the
individually observed parameter values for both models.
The RMSE in this table quantifies the precision of the
population prediction. It can be seen that for the systematic
covariate model, mean bias in the population predictions
stays well below 25% and remains relatively constant over
the age ranges for all parameters. For the fixed allometric
model, bias in the population predictions reaches up to
250%, and, especially in the clearance of the metabolites,
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Fig. 3 Population predicted concentrations versus observed concentrations including loess curves of morphine and its metabolites for the systematic
covariate model (A) and fixed allometric model (B). Data points in black originate from the internal dataset and data points in grey from the external
datasets. Different symbols are used for different external datasets: ■ = Ext. 1(9), ● = Ext 2(10), ♦ = Ext 3(11),* Ext 4(7), ▲ = Ext 5(8).

Table III Percentage η-Shrinkage in Both Models for the Parameters for Which Inter-individual Variability was Identified

Cl0 Cl1 Cl2 Cl3 Cl4 V1

Systematic covariate model (%) – 29.6 – 8.26 5.76 30.3

Fixed allometric model (%) 52.3 10.8 13.2 21.0 18.9 17.7
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Fig. 4 Result of the NPDE analysis for morphine and its metabolites using the internal dataset with the systematic covariate model (A) and the fixed
allometric model (B). In the histograms the distributions of the NPDEs for morphine and its metabolites in the total dataset are shown. The solid line
depicts a normal distribution, and the values below specify the mean and variance of the observed NPDE distribution in the histogram. A statistically
significant deviation of the distribution from a mean of 0 and a variance of 1 is indicated with an asterisk (*). The distributions of NPDEs in time after first
dose and against the observed concentrations are also shown. As for the systematic covariate model, log-transformed data have been used; the last plot
shows the NPDE against the log-value of the observed concentration.
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an increasing trend towards over-prediction is observed
with increasing age.

Table V shows the mean bias and precision in the
predictions of the model parameters in the external dataset

stratified in three age groups. As can be expected, for both
models, the bias in the parameter predictions of the
external datasets is generally larger than for the internal
dataset; however, for the systematic covariate model, it still

Fig. 4 (continued).
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remains below 35.6%, whereas for the fixed allometric
model, the values are between 26.6% and 296%.

DISCUSSION

In childhood, many physiological changes take place in quick
succession, and the paediatric population is very heteroge-
neous. Additionally, studies in this population are often

performed during routine clinical practice, which increases
the variability in both dosing and sampling schemes, while due
to limitations in sample size and frequency, often only sparse
data are obtained. All these factors influence the evaluation of
population and covariate models for this young population. In
the current study, a framework of six different evaluation
criteria is proposed for the evaluation of paediatric models.
Most tools in the framework are not necessarily new, but in the
context of paediatric model, evaluation adaptations to the
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Fig. 5 Individual post hoc parameter estimates (grey) and population predicted parameter estimates (black) for total morphine clearance (Cl1 + Cl2 for the
systematic covariate model and Cl0 + Cl1 + Cl2 for the fixed allometric model), the elimination clearances of the metabolites (Cl3 and Cl4) and distribution
volume of the central morphine compartment (V1) versus body-weight for the systematic covariate model (A) and the fixed allometric model (B).
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standard methods are sometimes required, or a shift in
emphasize on the various tools is essential.

As an example, two previously published paediatric
population PK models for morphine that were based on
the same dataset but fundamentally different covariate
models were evaluated with this framework. The
systematic covariate model was developed by regarding
body-weight and age as regular covariates in a system-
atic covariate analysis (1). The fixed allometric model
was based on allometric principles including body-weight

a priori using exponential functions with fixed exponents
and estimating an age-based function (4).

In itself, the number of parameters in a model is not an
evaluation criterion; however, according to the rule of
parsimony, a model should have the lowest possible number
of parameters. Large deviations of bootstrap parameter values
from the original value, low precision in parameter estimates
as expressed by high RSE values in the model fit and
bootstrap procedures, small number of successful bootstrap
runs and a condition number higher than 1,000 are all
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Fig. 5 (continued).
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generally indicative of model inaccuracy, model instability,
and ill-conditioning (16–19). Testing covariates for signifi-
cance and only retaining a covariate when it significantly
improves the model adheres to the rule of parsimony and
does not introduce specific assumptions into the model, and
the resulting model is always supported by data. In the
current example, it is shown that the systematic covariate
model performs well on all the criteria of ill-conditioning. In
case covariates in a model are not formally tested for
significance, there is a risk of over-parameterization. The
results for the fixed allometric model in this example suggest
the fixed allometric model to be an unstable model for which
precise parameter estimates cannot be obtained. It should
also be noted in this respect that with the increased number
of fixed and random model parameters in the fixed
allometric model, the degrees of freedom in this model are
increased as well. More degrees of freedom improve the

description of data by a model, but do not necessarily
improve the predictions by that model.

As stated before, paediatric PK analyses are often based
on sparse data. This is an important aspect to consider
when evaluating paediatric population PK models, because
when data are uninformative due to scarcity, the estimated
variability parameters may shrink to zero, causing the
individual post hoc parameter estimates to move towards the
population predictions. This shrinkage phenomenon makes
individual parameter estimates and the diagnostics based
on them less reliable or even misleading (13,20). Population
predictions, however, are solely based on the fixed effects
described in the structural and covariate model. As the
random effects are not considered in the population
predictions, diagnostics based on population predictions
are not sensitive to shrinkage and are therefore more
reliable than individual predictions. The two models in the

Parameter Age group Systematic covariate model Fixed allometric model

MPE RMSE MPE RMSE

Total morphine clearance neonatesa 4.26 0.426 10.8 0.922

toddlersb -0.74 1.65 12.7 5.00

infantsc 4.63 3.28 -2.56 7.90

M3G clearance neonatesa 19.7 0.291 -19.5 2.50

toddlersb 1.85 0.888 23.8 15.5

infantsc 14.5 3.82 188 9.03

M6G clearance neonatesa 12.5 0.0784 -69.0 0.825

toddlersb 0.262 0.230 100 5.27

infantsc 4.93 0.852 253 2.84

Distribution volume of central
morphine compartment

neonatesa 23.2 1.30 90.6 2.93

toddlersb 15.9 3.43 22.4 7.26

infantsc 5.90 9.27 9.35 13.4

Table IV Bias (MPE) and Preci-
sion (RMSE) of the Predicted
Parameter Values in the Internal
Datasets Stratified by Age Group

MPE mean prediction error, RMSE
root mean square error
a neonates, PNA <30 days, n=61
b toddlers, PNA = 1 month-1 year,
n=87
c infants, PNA >1 year n=35

Parameter Age Group Systematic covariate model Fixed allometric model

MPE RMSE MPE RMSE

Total morphine clearance preterm neonatesa 17.4 0.0667 192 0.444

term neonatesb 29.74 0.274 85.5 3.91

toddlersc 29.3 1.64 -26.6 4.22

M3G clearance preterm neonatesa -16.3 0.102 114 0.225

term neonatesb 31.0 0.463 108 0.928

toddlersc 5.48 0.818 172 1.34

M6G clearance preterm neonatesa -12.5 0.0447 46.8 0.779

term neonatesb 35.6 0.0818 31.1 0.502

toddlersc 12.5 0.285 93.5 0.490

Distribution volume of central
morphine compartment

preterm neonatesa -12.9 0.945 -115 1.46

term neonatesb -10.3 2.03 -296 3.50

toddlersc 3.45 3.47 -93.1 3.22

Table V Bias (MPE) and Preci-
sion (RMSE) of the Predicted
Parameter Values in the External
Datasets Stratified by Age Group

MPE mean prediction error, RMSE
root mean square error
a preterm neonates, (PNA <30 days
and PMA at birth <36 weeks), n=
80
b term neonates, (PNA <30 days and
PMA at birth ≥36 weeks), n=40
c infants, PNA=1 month–1 year,n=
33
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current study illustrate how diagnostics based on individual
predictions can be misleading when shrinkage is high, as
was the case for some of the parameters in both models
(Table III). The plots of the individual predicted versus
observed concentrations in Fig. 2 inadvertently suggest the
fixed allometric model to perform better than the system-
atic covariate model, since, especially for morphine, the
data points are closer to the line of unity. However, in
Fig. 3, large differences in the predictive performance
between the two models are revealed for both the internal
and external datasets when considering population pre-
dicted concentrations instead of the individual predicted
concentrations. For the systematic covariate model, there
are no signs of model misspecification. The fixed allometric
model, on the other hand, shows significant bias towards
under-prediction throughout the total concentration range.
Since diagnostics based on population predictions are
generally more reliable, these should always be included
in the evaluation of paediatric (covariate) models.

Simulation-based diagnostics known as posterior predic-
tive checks (PPC) are diagnostics that create a reference
distribution of an observation of interest by performing
multiple model simulations with inclusion of both fixed and
random effects and subsequently compare the actual
observations to this reference distribution (21). A visual
predictive check (VPC) is a commonly used and easily
interpretable form of a PPC that graphically presents the
reference distribution and observed data (22). A VPC can
be used for the evaluation of paediatric models as well;
however, when data are obtained during routine clinical
practice and variability in individual dosing and sampling
schemes are high, the NPDE methodology (14) is often
easier to perform and interpret. Shrinkage does not
influence the results of simulation-based diagnostics (13).
The results of the NPDE analysis of the models in the
current example demonstrate that the systematic covariate
model can quite accurately predict median concentrations
for morphine and the glucuronides, but that it slightly over-
predicts the variability in the overall dataset. This over-
prediction of the variability is constant over time and over
the concentration range. If this model were to be used in
simulation exercises, the predictions would be unbiased,
and the inferences made on the variability in the population
would be on the conservative side, as the variability is
predicted to be higher than it actually is. Based on the trend
towards under-prediction by fixed allometric model, it can
be concluded that significant bias in the predictions would
occur if this model would be used in simulation exercises.
The under-prediction of concentrations by the fixed
allometric model increases the risk of overdosing when
deriving morphine doses based on this model. These NPDE
results substantiate the results obtained in the population
predicted versus observed plots in Fig. 3.

Due to the heterogeneity in the paediatric population, it
is very important to not only perform diagnostics on the
population as a whole, but to also look at various
subpopulations by stratifying the datasets based on body-
weight or age. For both models in the example, stratifica-
tion showed the same descriptive and predictive
performance in all age groups. For the systematic covariate
model, the predictive performance of the model was
adequate in all age ranges. The trends towards under-
prediction identified for the fixed allometric model was also
similar across all age ranges. Despite the fact that
stratification of the diagnostics did not reveal new informa-
tion in the current examples, this adjustment of the various
validation tools remains imperative for the detection of
previously unidentified age-related misspecifications.

To corroborate the obtained covariate relationships in
paediatric models, the plots of individual and population
parameter values versus the covariate presented here in
Fig. 5, together with a numerical representation of bias and
precision in Table IV, have proven to be highly informa-
tive. Even in case of high shrinkage, this diagnostic will
enable the identification of bias in the population predic-
tions of parameters. In this study, in both models, body-
weight was the most important covariate for clearances and
distribution volumes. For the systematic covariate model,
population predicted parameter values are adequately
centered in the range of individual predicted values for all
parameters and across the entire body-weight and age
ranges. However, for the fixed allometric model, the
population predicted parameter values are biased com-
pared to the individual predicted values. For some
parameters, this bias exists over the total weight and age
ranges; for others, only over part of these ranges. The
results in the plots in Fig. 5 and Table IV provide an
explanation for the adequate individual concentration
predictions by the fixed allometric model and the highly
biased population predictions by this model, as observed
with the other evaluation tools. Structural model misspeci-
fications in the population parameter values result in biased
population predictions that are corrected by the error
models to yield good individual predictions. This type of
diagnostic is hardly ever published; however, the informa-
tion contained in these plots and tables is crucial and should
become a standard diagnostic tool with paediatric popula-
tion PK models.

Especially in drug development, population PK models
in paediatric subpopulations are often used for extrapola-
tions to younger age ranges. When a model is used for this
purpose, the obtained covariate relationships should be
thoroughly evaluated, for instance by using the diagnostic
in Fig. 5 and Table IV. In the current study, two out of five
external datasets (Ext 4 and Ext 5) include preterm patients,
a younger and smaller population than the population in
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the internal dataset. For both models, the results of the
various tools in the framework were similar irrespective of
the age range in the dataset that was used, indicating that
the inclusion of a new patient population in the external
validation did not influence to overall results.

A systematic covariate analysis is a data-driven ap-
proach; therefore, the extrapolation potential of the result-
ing model cannot be known a priori. It is clear that for the
systematic covariate model in the current analysis extrap-
olations to older (heavier) children is not possible as the
body-weight-based exponential equation for clearance
predicts rapidly increasing clearances at higher weight
ranges. Figure 5 indicates that for this model, population
parameter predictions are unbiased in the lower weight
ranges, suggesting that extrapolation to smaller children
could be possible. The extensive evaluation procedures in
the current example prove this to be the case in this
particular example.

It is claimed that the allometric equations used in the
fixed allometric model are based on ‘sound biological
principles’ (23) and that the methodology based on these
equations therefore yields mechanistic models that can be
used for extrapolations outside the studied age or weight
ranges. It is argued that the influence of size (parameterized
by body-weight) and maturation (parameterized by age) on
the parameters in paediatric population PK models are
disentangled by using the fixed allometric equations
augmented by age-based functions (5,24). However, the
theory of allometry is based on the empirical observation
that over a wide weight range, metabolic rates of animal
species increase with body-weight to the power of 0.75 (25).
The fixed allometric exponents have no biological or
physiological meaning, although reports exist that propose
possible physiological explanations (26–28). Conversely, a
large body of evidence exists against the existence of one
unique value for the allometric clearance exponent (29–35)
and against the application of these allometric equations in
human paediatric PK models (36,37). Additionally, the
maturation function based on age only reflects a mathe-
matical residue of the age effect that remains after the
inclusion of the correlated covariate body-weight. In the
current study, in the fixed allometric model, the model-
predicted increase in clearance comes to a plateau with
increasing body-weight. Therefore, this model cannot be
excluded for extrapolations to higher weight ranges. The
predictive properties of this model in preterm neonates is
very poor, albeit comparable to the predictions in the older
children that comprised the learning dataset. As a result,
the extrapolation potential of fixed allometric models in
general can neither be confirmed nor disputed based on the
results in the current study.

CONCLUSION

The framework of six evaluation criteria proposed in the
current study takes into consideration the specific issues
encountered in the evaluation of paediatric population
models. The application of this framework to two models
for morphine and its two major metabolites in children
younger than 3 years with fundamentally different covariate
models demonstrates how to detect over-parameterization,
which is a risk with models based on sparse data.
Additionally, it illustrates the importance of diagnostics
that are based on population predictions rather than
individual predictions, as high shrinkage due to sparse data
may yield misleading individual prediction-based diagnos-
tics. Finally, the diagnostic comparing population parame-
ter predictions with individually observed parameter values
proved to be highly informative in assessing obtained
covariate relationships, as in the current example it
detected the cause of model misspecification by the fixed
allometric model. Stratification of the various diagnostics
did not yield much additional information in the current
examples; however, due to the heterogeneity of the
paediatric population, this adaption of standard validation
tools may be of value for other paediatric models.

The differences observed in model performance between
the systematic covariate model and the fixed allometric
model in the current study do not imply that any of the two
methodologies for covariate model development is superior
over the other. The current study does, however, highlight
the importance of corroborating results in evaluation
procedures. It also illustrates that information in data
should not be ignored and that one should never be guided
by theories alone.
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